Identification of Abnormal Masses in Digital Mammogram Using Statistical Decision Making

نویسندگان

  • SANGITA BHATTACHARJEE
  • INDRA K MAITRA
چکیده

The increasing threat of breast cancer in developing countries may not only be handled by the existing medical setup as well as insufficient number of medical workforces. To handle the increasing volume of data produced by diagnostic imaging that can be efficiently managed by computer aided detection/diagnosis (CAD) to assist medical practitioners in image interpretation to detect structural abnormalities like tumour. Mammography has been proven to be the most reliable and cost-effective methodology for early breast tumor detection. In this paper, an abnormality detection methodology has been proposed alongwith preparation and pre-processing steps. The accuracy of CAD to detect abnormalities on medical image analysis depends on a robust segmentation algorithm. Here two types of segmentation mechanism have been implemented i.e. edge-based and region-based. Finally, a proposed statistical decision-making system is used to extract the abnormal region(s) based on intensity distribution. Applying the proposed method on CR and DR mammographic images produces the quantitative measures accuracy, sensitivity and specificity as 96%, 97.6% and 88.6% respectively which is comparable with other contemporary research works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast abnormalities segmentation using the wavelet transform coefficients aggregation

Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection of Abnormal Masses in Mammogram Images

Masses in the breast can be located in digital mammogram images by computationally analysing various feature statistics from the image. Any algorithm used to analyse digital mammogram images can be both time-consuming and errorprone because many areas of these images appear to have features that are mass-like but not masses. Thus false positives are produced which detract from the effectiveness...

متن کامل

Identification of masses in digital mammogram using gray level co-occurrence matrices

Digital mammogram has become the most effective technique for early breast cancer detection modality. Digital mammogram takes an electronic image of the breast and stores it directly in a computer. The aim of this study is to develop an automated system for assisting the analysis of digital mammograms. Computer image processing techniques will be applied to enhance images and this is followed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016